

Amount	Base volume		Base amount (grams)		
0.2 grams	2-?? =?? r	nL	Doncitul	m = m	$m = \rho \times v$
$Density(\rho) = \frac{m}{v}$			Density(μ	$v = \frac{1}{v}$	$m = p \times v$
v v		Base	e volume	Bas	e amount
If $ ho=$ 1, V 0.2 gram is		2-0.2	2 =1.8 mL	1.8 r	nL × ρ =??
If ρ =2, V 0.2 gram is	s 0.1 mL	2-0.2	1 =1.9 mL	1.9 r	nL × ρ =??
If $ ho$ =3, V 0.2 gram i	s 0.067 mL	2-0	0.067 =1.93	33 mL	·

Base amount

1.8 mL × 1 g/mL= 1.8 g

 $1.9 \text{ mL} \times 1 \text{ } g/mL = 1.9 \text{ g}$

1.933 × 1 =1.933 g

If base density is 2 1.933 × 2 = 3.866 g

The base has a density of 1.0 g/mL, what will be the total volume for 2 grams?

2 mL Volume vs Weight

 $Density(\rho) = \frac{m}{v}$

Prepare a suppository containing (0.18) g of the active drug with a density of 1.8 g/mL. The base has a density of 1.0 g/mL. What will be the total volume if I mix 0.18 grams of the drug with 2 grams of the base?

$$v_{drug} = \frac{m}{\rho} = \frac{0.18}{1.8} = 0.1 \, mL$$

 $v_{base} = \frac{m}{\rho} = \frac{2}{1} = 2 \, mL$

 $v_{total} = 0.1 + 2 = 2.1 \, mL$ $v_{total \ base} = 2 - 0.1 = 1.9 \, mL$

 $m_{base\ removed} = v_{base\ removed} \times \rho_{base}$

$$m_{base\ removed} = 0.1 \times \rho_{base} = 0.1 \times 1$$
 = 0.1 grams

Dose accuracy

Drug $Density(\rho) = \frac{m}{v}$			Base ρ : 1 g/mL		
Density (g/mL)	Weight (g)	Volume (ml)	Replaced volume (mL)	Replaced weight (g)	
2	0.1	0.05	0.05	0.05	
1	0.1	0.1	0.1	0.1	
4	0.1	0.025	0.025	0.025	

Base ρ : 1.5 g/mL

Replaced weight (g)

Example:

Prepare a suppository containing 200 mg of the active drug with a density of 3.0. The base has a density of 1.0. The weight of the blank base using the same mold is 2.0 g. How many grams of the base do you need?

Volume of the mold: 2.0/1.0=2 mL

	Drug	Density(p)	$=\frac{m}{v}$ Bas	e ρ : 1 g/mL
Density (g/mL)	Weight (g)	Volume (ml)	Replaced volume (mL)	Replaced weight (g)
3	0.2	0.2/3=0.067	0.067	0.067 ×1
4	0.2	0.2/4=0.05	0.05	0.05 × 1
5	0.2	0.2/5=0.04	0.04	0.04 × 1

	Drug	Density(p	$) = \frac{m}{v}$ Bas	e <i>ρ</i> : 1 g/mL
Density (g/mL)	Weight (g)	Volume (ml)	Replaced volume (mL)	Replaced weight (g)
3	0.2	0.2/3=0.067	0.067	0.067 × 2
4	0.2	0.2/4=0.05	0.05	0.05 × 2
5	0.2	0.2/5=0.04	0.04	0.04 × 2

Base ρ : 2 g/mL

Replaced weight = 0.067(replaced volume) × ρ (base)(E1)

Replaced weight = $0.067(drug \ volume) \times \rho(base) \dots (E2)$

$$\frac{0.2}{3} = 0.067 \qquad \frac{0.2 \ (API \ Amount)}{3 \ \rho(drug)} = 0.067 (drug \ volume)$$

 $Replaced \ weight = \frac{API \ amount}{\rho(drug)} \times \rho(base)$

 $Replaced weight = \frac{API \ amount}{\rho(drug)} \times \rho(base) = \frac{API \ amount}{\frac{\rho(drug)}{\rho(base)}}$

Determine the occupied volume

- 1. Calculated the total amount of the APIs required for the total number of suppositories.
- 2. Estimate the average and total weight of the base
- 3. Divide the density of APIs by the density of the base
- 4. Divide the total weight of the APIs for the total number of suppositories by the ratio obtained in step 3 to afford the amount of base displaced by the APIs
- 5. Subtract the base amount displaced by the APIs to obtain the weight of the base required.

Q: Prepare 10 suppositories, each containing 200 mg of the active drug with a density of 3.0. The base has a density of 1.0. The weight of the blank base using the same mold is 2.0 g. How many grams of the base do you need?

- 1. Total API: 10 ×0.2=2 grams
- Average blank base per suppository: 2.0 gam. Estimated total base 10 ×2=20 grams
- 3. Density ratio=3.0/1.0=3
- 4. Amount of the base to be replaced by APIs: 2/3=0.67
- 5. Total base needed: 20-0.67=19.33 gram